Electron and nuclear spin qubits based on donors in silicon


1London Centre for Nanotechnology, London WC1H 0AH, UK
2Dept. of Materials, Oxford University, Oxford OX1 3PH, UK
3University College London, London WC1E 7JE, UK
4Inst. for Crystal Growth, D-12489 Berlin, Germany
5Physikalisch-Tech., D-38116 Braunschweig, Germany
6Vitcon Projectconsult GmbH, 07745 Jena, Germany
7Simon Fraser University, Burnaby, V5A 1S6, Canada
8Princeton University, New Jersey 08544, USA

Electron and nuclear spins of donors in silicon are promising candidates for representing quantum bits, with coherence times of up to 3 seconds for the electron spin[1] up to 3 minutes for the neutral donor nuclear spin[2], and 3 hours for the ionized donor nuclear spin[3]. Furthermore, single-shot readout of both the electron spin and nuclear spin have been demonstrated, with measurement fidelities of up to 99.8%[4, 5]. In order to scale up to more complex quantum devices based on donors, it is necessary to find a way to coherently control individual spins (or at least a defined subset of them) within a larger array. One approach is to apply global microwave fields to coherently excite resonant spins, combined with (pulsed) DC electric fields to bring different spins in or out of resonance with the control field, using the Stark shift. We present Stark shift data for all group-V donors in silicon (P, As, Sb and Bi), and show how electric fields can be used for conditional control of nuclear spins[6]. An alternative method is to apply local AC electric fields, which we show theoretically can be used to drive spin transitions in certain regimes through modilation of the hyperfine coupling.